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strength than the LSE mode.

Numerical codes for plotting the dispersion relations of partially-filled
rectangular waveguides and dielectric slab-loaded open rectangular
resonators were developed. These were examined in detail in the 50-300 GHz
range of frequencies and it was shown that good coupling could be obtained
with standard waveguide configurations.

Dielectric-loaded WR-~42 and WR-28 waveguides were constructed and tested
with the 150-200 KV 1-10 A electron beam generator which has been used in
the previous Cerenkov Maser experiments. Oscillation was achieved with
both systems. The output power levels were modest in comparison with the
100 KW peak levels achieved with cylindrical system buth it is felt that
this is due in large part to the (as yet) unoptimized rectangular beam
transport system. Oscillation has also been achieved with the open
rectangular resonators and during thecoming contract year, an input
coupler will be designed for this structure and its potential as an
amplifier will be evaluated.

Standard waveguides loaded with thin dielectric layers on their broad
faces were used as the basis for amplifier calculations. It was found
that gains in the range 1-1.5 db/cm could, in principle, be obtained from
these structures when they were driven by an electron beam with
characteristics similar to our present genérator. The fractional 3 db
band widths are also potentially very large (full waveguide band is
typical). Details of these calculations are presented in an attached
appendix. (his document is currently being edited and prepared for
publication and preliminary copies will be forwarded when they are
available). When a suitable driver is located, the amplifier configuration
will also be tested.
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Experimental Performance of a Cerenkov Maser

at Lower mm Wavelenaths. J. WALSH, E. GARATE,

T. BULLER, R.W. LAYMAN, R. COOK and D. WILLEY, ‘
Dartmouth Collece*--Cerenkov Masers have achieved 1
hundred-KW power levels in the middle-mm range and :
outputs in excess of ten KW in the lower-mm regionl. s
Substantial output levels, on higher order cavity ;
modes, have also been obtained at wavelengths below
1 mm. However, the typical single-stage high power
output pulse is often considerably less than the
electron beam pulse length. In the longer wavelength _ f
* range, two-stage, oscillator-amplifier operation has
been used to increase the pulse length and the
overall stability of the cutput. The results of
attempts to extend this concept to shorter wavelength
will be discussed. 1In addition, resonatcr design
criteria for fundamental mode operation in the 1-mm
wavelength range and preliminary experimental results
will be presented.
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Excitation of the Slow Cyclotron Wave bv the
Passage of a Superluminous Electron Beam Near a
Dielectric Slab*, WILLIAM B. CASE and ROBERT D, KAPLAN,
Grinnell College, and JOHN E. WALSH, Dartmouth College.
We consider the excitation of the slow cyclotron wave £
due to the interaction of a superluminous electron ¢
beam passing near a dielectric slab. The analysis is
carried out by treating the electron beam as a cold
fluid which perturbes the degenerate polarization modes
of the electromagnetic waves in free space. The
resulting modes are then matched to the modes within
the dielectric producing a dispersion relation for the
system. When solved using numerical techniques, we
find exponential growths for the slow cyclotron mode
(Cyclotron-Cerenkov) as well as the usual slow space
charge mode (Space Charge-Cerenkov). 1If this systemis
to be used for generation of submillimeter waves, one
must use high Y (y > 27) to guarantee good coupling. ;
In this regime the growth rate for the Cyclotron-
Cerenkov instability is greater than that for the i
Space Charge-Cerenkov. Considerations of the effects
of therminal spread will also be given.

i
*Work supported in part by AFOSR Contract # 82-6108.
1
24
&} Prefer Poster Session Submitted by:
(O Prefer Oral Session S0 o
[J No Preference Zs;gnature of A58 membéri
O Special Requests for placement William B. Case 1

of this abstract:

. (same name typewritten)
{3J special Facilities Requested Grinnell Ccllege., Grinnell, lova
(e.g., movie projector)

(address)

This form, or a reasonable facsimile, plus Two Xerox Ccpies must be received
NO LATER THAN Noon, Friday, July 15, 1383, at the foilowing address:

Division of Plasma Physics Annual Meeting
j c/o Ms. Barbara Sarfaty
: Princeton Plasma Physics Laboratory

P. O, Box 451

Princeton, New Jersey 08544




APPENDIX TO SCIENTIFIC REPORT

CERENKOV MASER AMPLIFIERS

by

John Branscum

Department of Physics and Astronomy
Dartmouth College

Hanover, N.H. 03755

June 1984

Ll adey 280 Gk .- PR [ T P

TUR . T gt - oo b AR % AT et

AP Sl o W 2 kY B i

T e oV IUTLT STV Sy

AT B AT 7T R




Chapter 1: Introduction

Review of Radiation Sources

Because of potential application in radar and
communications, since the 1940's there has been a great
amount of interest in producing radiation ranging in
wavelength from 30 cm. down to infrared wavelengths of 1 to
10 microns. Two types of sources have filled in much of
this part of the electromagnetic spectrum. Traditional
microwave sources, such as the klystron, thz magnetron, and
the traveling wave tube, are capable of producing very high-
power radiation down to wavelengths of about 1 cm. They
are, however, ultimately limited by the fact that they wmust
contain some sort of resonating structure that is on the
order of the wavelength of the produced radiation in size.
Thus, as shorter wavelengths and high power are asked for
from these devices, several problems, such as tolerances in
manufacturing, heat dissipation, and electron-beam focusing
become harder and harder to overcome. and eventually become
insurmountable. The limit of this technology is radiation
of wavelengths of about 1mm with power levels in the 100's

of watts.

In the infrared part of the radiation spectrum, lasers ;
are very effective sources. They will produce high power

rajiation at any wavelength for which a molecule with the




desired energy difference in electron orbital energy levels
can be found. This is, however, also lasers' mz2jor
shortcoming; they will not work at any given wavelength, but
only those for which such a molecule can be found. Thus
they have not been able to fill up the wavelength spectrum
smoothly, but rather fill it with randomly placed lines of
producible radiation. Therefore, the spectrum of lasers and
traditional microwave sources looks something like that
shown in Fig. 1-1, with smooth filling but diminishing power
down to 1 mm., and then with spotty filling down to optical

wavelengths.1

Free Electron Lasers. the Cerenkov FEL

In the last ten years, the desire to fill the gap
between 1 cm. and 10 microns, and to smooth in the spotty
coverage below 10 microns, has generated a high level of
interest in another type of source, the free-electron laser
or FEL. There are several types of FELs, but they all have
one thing in common, they are all powered by a high energy
electron beam. In general, an FEL will consist of sucnh a2
beam, plus some sort of interacting structure which can
couple energy out of thé beam and into an electromagnetic
wave. FEL's have the advantage over lasers in that they are
in principle continuously tunable over any wavelength, and

they have the advantage over traditional microwave
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technology in that the FEL's dimensions can be many times
larger than the wavelenzth of the radiation. Exactly how
these two advantages are realized is peculiar to each type
of FEL, and a survey of the mechanisms i1s beyond the scope
of this papsr. We will, however, take a look at the

Cerenkov FEL, since it is the typz of FEL with which this

paper is concerned.

In a Cerenkov FEL the mechanism for coupling energy out
of tha electron beam is an interaction between the beam and
a dielectric. This interaction depends on the fact that the
electrons in the beam can be made to travel at velocities
greater than the speed of light in the dielectric. It was
shown around the turn of ths century that any charged
particle traveling at superluminal velocities would radiate,
sending out an electromagnetic shock-wave similar to the
bow-wave of a boat traveling over water at a speed greater
than the speed of surface water-waves.2 This electromagnetic
shock-wave, known as Cerenkov radiation, is the source of
radiation in the Cerenkov FEL. The electron beam, traveling
at a speed greater thzn light in the dielectric, is
propagated down a waveguide partially filled with
dielectric. By keeping the beam close to it, the dielectric
is "tricked" into thinking that there actually is a
superluminal-velocity particle traveling through it, and

Cerenkov radiation is emitted.
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Now. for Cerenkov radiation in an infinite medium, all
frequencies for which the velocity of the particle is
greater than the phase velocity of the wave in the medium
are emitted.3 Therefore, in the Cerenkov FEL an infinite
number of frequencies will be emitted due to Cerenkov
radiation when the beam first enters the guide. However,
since the radiation is emitted in the waveguide, and since
each frequency emitted will travel down the guide at a
discrete phase velocity, there will be a single or a few
frequancies that will travel with a phase velocity egual to
the velocity of the electron beam. The waves corresponding
to these frequencies will therefore travel down the guide
along with the beam, and there will be the possibility for
prolonged interaction between the begam and these waves. At
this point the Cerenkov FEL begins to operate exactly like a
conventional traveling-wave-tube. The dielectrically-~loaded
waveguide acts as a slow-wave structure, and the electron
beam, under proper conditions, can be made to do work on the
wave, 50 that there will be growth'in the wave at the
expense of the energy of the beam. (Fig. 1-2).

It is on this aspect of the Cerenkov FEL that we will
focus on in this paper. We will look at one particular
resonator geometry, the partially- filled rectangular
waveguide, and how it will work as a resonator for a
Cerenkov-type FEL/traveling-wave-tube. Therefore our

approach will be to assume that a wave already exists in the
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guide, and then to introduce an electron beam and allow it

to do work on the wave, causing the wave to grow. The
Cerenkov interaction is not presented explicitly in the
calculations, but it should be kept in mind that this is
where the wave originated.

Finally, we refer back to the original statement thsat
the Cerenkov FEL will be useful in filling ths gaps left by
lasers and conventional microwave technology in the
electromagnetic spectrum. Considering tunability, from the
above general discussion it can be seen that in principle at
least, the Cerenkov devic: will be tunable simply by varying
the beam velocity, so that the beam will be synchronous with
waves with different frequencies. (Note that this is 2
general feature of all traveling-wave-tubes., Note also thszt
the growth rate of the wave will certainly vary as the phase
velocity changes, so that the operational bandwidth of the
device will also be éf concern.) Concerning the problem of
the size of the resonating structures, it has been found
that in general for a Cerenkov FEL there is a correlation
between the resonator dimensions and the output radiation,
but that the scaling is such so that the problems mentioned
above: heat dissipation, manufacturing tolerances, and beam
focusing, are at least partially eased.%5 In this paper we
will consider both the bandwidth and frequency output for
the partially-filled rectangular resonator for the Cerenkov

FEL.




The CERENKOV FEL AT DARTMQUTH COLLEGE

The Cerenkov-type FEL at Dartmough College has been in

operation since 1979. The initial work Jdone with the device
focusad primarily on determining what the relaiion was
between the voltage of the electron beam and the frequency
of the output radiation, and comparing the experimental
results with the theoretical predictions discussed above.
More recent work has focused on predicting and measuring the
output power of the device. Also, while the original output
wavelengths were usually between 1 em and .5 cm, some recent
work has centered on trying to get output wavelengths down

to the 1mm range.

All of this work has had one thing in common, it has
bz2en done using a cylindrical geometry for the resonator
design. The cylinder was the initial geometry choice
because of its very high level of symmetry, which allowed r
for the use of the simplest possible electron beam R
generation and focusing, the simplest schemes for coupling
the output radiation out of the device, and also the }
simplest methods for actually building the parts of the

machine.

f Motivation for Considering the Rectangular Geometry

While the cylindrical geometry offers several
advantages due to its high level of symmetry, it does have

two potential disadvantages. The first is a problem that

absdd 40 L0 - -




almost certainly has already been seen with operation of the
device at Dartmouth. This is the problem of electron
trapping on the inner surface of the dielectriec. Inevitably
when a high current electron beam is fired down a long tube,
some of the beam will strike the inner surface of the tube.
Since in the partially-filled, dielectrically-loaded
cylinder this inner surface is a dielectric, and in fact,
for highest efficiency in operation of the FEL, a very
low-loss dielectric, these electrons may have a very
difficult time escaping from the dielectric surface and
getting to ground. Since it is easier for charge to flow
along the surface of a lossless dielectric than through it,
the RC time related to the leaking off of these electrons
from the dielectric surface will depend on the length of the
surface path to ground. This path can be very long in the
cylindrical geometry, on the order of the length of the
resonator.

In the partially-filled rectangular geometry which we
will consider here, however, the surface path length to
ground will be on the order of the width of the guide.

(Fig. 1-3). Thus we would expect this rectangular resonator
to have less of a problem with charge build-up on the
dielectric surface. This should allow for more stable beam
propagation (the trapped electrons tend to repel the
electron beam, which causes problems in getting the bean

down the tube), and for generally cleaner operation of the
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device (no breakdown of the dielectric due to excessive
charge build-up.)

The second potential disadvantage to the cylindrical
geometry is the same high level of symmetry that was
initially considered to be of such advantage. This high
synma2try makes the control and characterization of the
polarization of the output radiation difficult. While
polarization of output radiation has not yet been important
to this particular experiment, eventual use of the Cerenkov
FEL as an amplifier will almost certainly make it so. (wWe
will take a brief look at the potential of a Cerenkov device
using the rectangular geometry as an amplifier in chapter
5.) So for these two reasons: charge build-up and centrol
of the polarization of the radiation, we will consider the
use of the rectangular geometry as a resonator for use in a

Cerenkov-type FEL. )
TOPICS

In Chapter 2 we will briefly describe two types of gain
calculations which we hope to apply to this geometry, the
single-particle and the collective gain calculations. The
two types correspond to two regimes of beam density and gain
magnitude. The single-particle calculation may be used when
the beam density is low and the gain is small, and the

collective gain calculation must be used for dense bzams and

high gains.
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In Chapter 3 we will consider the resonator itself in

detail and discuss the types of modes that can be
propagated in it. We will then present the dispersion
relations (from which phase velocity vs freqpency
information can be obtained) for each of the mode types.

The last part of Chapter 3 will look at the actual fields of
each mode type and predict the relative growth rates for
each. All of the results in Chapter 3 will have been
obtained from exact solutions of Maxwell s equations, but
details of the calculations will be defered until appendix

1.

In Chapter 4 we will apply the two gain calculations to
the results from Chapter 3, and compare the results.
Finally, in Chapter 5 we will consider the use of the

rectangular geometry as a high gain, high energy amplifier,




Chapter 2: Gain Mechanisas

Introduction

In this chapter we will discuss two types of gain

calculations, the single-particle gain and thg collective
gain calculations, which we will eventually apply to the
rectangular-waveguide resonator geometry. Before getting
into specifics, however, let us first consider the general
requirements that must be met in order to get significant
growth of an electromagnetic wave due to an electron beam
doing work on it. First, the electromagnetic wzve must have

2 field component on which the beam can do work, waich means

a component in the direction of beam travel. (We will now
assume that this direction is the z-direction.) Second, the
beam velocity should bz just greater than the phase velocity
of the wave.6 This second point is important because If the
beam travels at a speed radically different from that of the
wave, it will be in the correct phase relation to the wave

for too short a time to do any useful work on the wave, and

il

e e o e

-

if it travels at a velocity close to the wave velocity, bu

slightly less than it, the wave will end up doing work on

the beam, so that instead of the desired growtn of the wave

at the expense of beam energy, we would get an acceleration

- ——— -

of the beam at the expense of the energy of the wave.
A highly simplified way of looking at this process is

to imagine the electrons traveling along with the wave,
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where the wave is represented by a.series of field-strength

peaks and troughs (Fig. 2-1). If the electrons travel at a
speed slightly greater than the wave velocity, more
electrons will be trying to "run up® the hills, losing
energy to the wave, than will be "running down" the hills,
and zaining enargy from the wave. If however, tne beam
velocity is less than the wave velocity, the situation is
reversed, and more electrons run down the hills than run up
them, and the wave loses energy to the beam as it
accelerates the beam.

Beam-wave Coupling Strenzth

An important aspect of thz interaction between tha bean
and the wave is the relative strength of the Ez_compcnent of
the wave. Since this is the field component that ths
electron beam does work against, the strongzer this component
is relative to the oth2r components of the wave, the amore
powerful the interaction between the beam and wave will bz,
This fact will be shown to be very important in chapters 32
and 4.

Single-Particle Gain Calculation

In this calculation the general approach is to first
use Maxwell' s Egustions to determine the fields in thz
resonator. Then, while keeping these fieids constant, the

~22h electron in th2 bean

electron beam in introdu:zed, snd
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is allowed to do work on the fields in the resonator. No
account is taken of how the other electrons in the beam may
affect this interaction of a single electron with the
fields, and no account is taken of how the fields may change
due to the work being done on them by the electrons.
Therefore this calculation is most useful when the beam is
tenuwous enough so that the electron-electron interactions
may be ignored, and when the gain is small enough so that
the fields may be approximated as being constant during the
transit time of an electron in the beam through the

resonator. Since the calculation has already been well

pzesented,7 only the initial assumptions, the results, and a
few comments will be presented here,.
We first note that any growth rate (or loss rate) may

be expressed as an inverse cavity Q, where:

1 = -1 4¢ !
Qp wE 4t

and where:

Q, = cavity Q due to the beam,
E = the total energy stored in the resonator, and E
w = the frequency of the radiation in radians. !

Therefore, 1/Qbis a relative measure of energy gained or
lost in one period by the wave.
There is one important assumption other than the low

beem Jdensity made in doing this calculation. This
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assumption is that the beam is relatively cold, (i.e. thzat
most of the zlectrons are traveling at the same veleccity.)

so that we may approximate the electron velocity

distribution zs a delta function in velocity space. Wwith
this assumption, the single-particle gain calculation
yields:
3 2
)l
1 I, n By gre
= —x

Qb 53313 IO 0 SE

where: _ —th . ( _ 1

C
2
l1-8
{note that we have zssumed theat Vonage of tn2
wave = v

beam)

and where:

Ib = bezm current

2
To = %S » Where ry = 2 (Io 2= 17 002 anps)
e} mc
also, L = resonator length,
Ezo = a field amplitude 2t some reference point.
m =z a relative beam density term, which eguals
- . 12
n= dAn lbzl
2
IEZOI Ap A, = beam area

Prata
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where n = the beam density (a point function,
set equal to no).
Ez = the electric field in the direction
of beam propogation. 7

(also a point function)

.2
and finally, G(&) =9_51—n2§, where © = (kv - w)L/v.

0 B8

It is this last term, G'(6) , that cecntzins the crucial
information concerning whether work will be done by the beam
on the wave, or visa versa. It describes the phase slippage
that an electron in the beam sees relative to the wave
during one pass through the resonator. Put more simply, it
tells whether more electrons run up hills or down them. A
plot of G'(8) vs. is given in Fig. 2-2. For the beam to
do work on the wave. it turns out that G'(&) must be < 0.
We will therefore assume for the rest of the paper that z
2.2, so that G'(8@) = -.13, which will give us maximum gain

as a function of

Collective Gain Calculation

In this calculation the electron/electron interactions
are taken into account by treating the electron beam as a
fluid subject to the standard continuity and conservaticon
eguations. There are several possible approaches to this

roblem, but the one used hesre has been chosen because it is
p

T
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a well-known technique with well- known results. It is

presented in its entirety by Felch,8 so again, only the

initial assumptions, the results, and comments are given
here.

The approach used by Felch is to first derive the usuzl
dispersion relation for the empty resonator, and then to

introduce the electron beam. A second dispersion relation

is derived, this time including the beam in Maxwell's

Equations. Ffinally, the beam-dispersion relation is
expanded about the no-beam relation, using a Taylor series
expansion:

D@, k) = D(Wy,ky) - 2D |AY
W

Q)O,ko
where AW is the complex frequency shift due to the presence
of the beam. The imaginary part of this shift gives the
growth-rate of the wave due to the beam. Note that thz only f
assumption made in this calculation is that the expansicn .
aw '
—

given above is valid, which reguires simply that >> 1.

Thus there is no requirement on the beam density or cn ths
total gain, as long as this initial assumpticn holds.

Since the form of AW:, will depend directly on the fornm
of the dispersion relation, its exact solution is not given
until Chapter 4. (The dispersion relation is found in

Chapter 3.)




Chapter 3: Fields and Modes for the Rectangular Resonator

LSM and LSE Modes

We will now take a close look at the modes for the
partially-filled rectangular resonator The dimensions of
the waveguide are given in Fig. 3-1, and the dielectric
constant of the dielectric slabs in the resonator is €
This waveguide geometry will support two different

S which are

mode-types. called LSE and LSM modes
distinguished by the absence of particular field components.
In the LSE modz the Ex field component is zero while in
the LSM mode the B, field component is zero. (LSE mode
stands for longtitudinal section electric mode which means
simply that all E fields are parallel to the dielectric
interfaces Similarly LSM mode stands for longtitudinal
section magnetic mode.) (Fig. 3-2)

Each of the above mode-types LSE znd LSM vyields =z
different dispersion relation or frequency vs.
phase velocity condition These two dispersion relations
are obtained by first finding the proper field shapes for
each mode and then matching the proper boundary conditions
across the dielectric interfaces (See appendix 1 for a

complete description of the derivation.) The two dispersion

relations so derived are given below
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LSM tanh(ga) . _Cot{sb) £Db
ga sb a
LSE (ga) tanh(ga) _ _a (sb) cot(sb)
b
where q2 = kz- Q)z + tz ’
2
c
s? = 2% - k24 2
CZ
and t = nW n=1.,2.3,

and finally where

W = freguency in radians,

=
n

27T /A g and )\g = the quide wavelength.

The Infinite, Two-slab Resonator; Comparison of LSE anrd

LSM Modes with TE and TM Modes

A highly simplified but similar geometry to the
partially filled rectangular waveguide is the infinitely
wide, two-slab waveguide. (Fig. 3-3) Solving Maxwell s
equations for this resonator reveals that this geometry will
support two different mode types. and that these mode types

are the familiar tranverse electric (Ez = 0), and -

— = M
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. 3-3. Infinite, 2-slab gecmertry; (nNO verliation
with y).
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tranverse magnetic (Bz = 0) modes that are characteristic of
many waveguide systems, A close look at the fields of the
TE and TM modes reveals a close parallel between them and )
the LSE and LSM modes It can be shown that for the TM(E)
mode with no variation in the y-.direction Bx(Ex) must egual

0 Thus the LSM and TM modes both have Bx = 0, and the LSE

and TE modes have Ex = 0.

We might therefore expect the two sets of modes to
share other characterstics. Specifically, since E =0 for
both the TE mode and the LSE mode, and since EZ = 0 for the
TE mode, we might expect the LSE mode to have a relatively
weak E_ component. If this is found to be true, then as was
noted in Chapter 2, the coupling between the electron bean

and an LSE wave would also be relatively weak. To test the

hypothesis we plot

Energy contained in Ez field component
Total Energy in the fields in the rescnator

for both the LSE and LSM modes These pleots are shown in
Figs. 3-4 & 3-5. 1In Fig 3-4 the dimensions of the
resonator used are typical of what we would expect to us2 in

a real experimental situvation. In Fig.3-5 we let the

y-dimension of the resonator get very large, to show that

the LSE mode does become even more TE-~-like as the infinite.




C(Ez # Ez>/Ernergy ve. Freguency

= Ll‘j T T i I T T 7 l RN l 1 1 } T T 1 ] ]
=2 —
. .3 ]
O -
&= i
E = LSM MODZ ]
5T -
~. 2 [ B
~ -
&L -
= — |
-1
A T —J
- -]
- J
i 1LSE MOLE -
S ] ! 1 * .—-'
1) o VT T R S L N N
42 S1% &2 %1% 122 t a2
FREQCGHh=D

WR-42 Waveguide
Slab thickness = 1lmm

Fig. 3-4. (Energy stored in z-component of electric field)/
(Total Energy stored) for LSE and LSHM modes;
for WR-42 waveguide.




o
&

Fig.

2/ ENERGY

B

3~5.

CEz % E=zD/Erergy ve. Freguency

1Tllﬁ'llellTIll\1Tl

LSM MCLCE

Il I| 1T r1 TT11 ll T IT IR

LSE MODZ
. l‘r1:4~] ] |4L1 ! L 1 L,!l

IIIT

L1

N Il {1 ll 1t ll L1l Lll

4L 60 g2 1808 128

FREQCGh=>
WR-42 Waveguide, except width = 30 cm
Slab thickness = Iimm.

(4

(R4

(Energy stored in z-component of e
field) /(Total Energy storec¢) for L
LSM modes, with width of waveguice —

o =
try @

a

ric
na
w

= Sl




29

2 slab dimensions are approached. As we expected. the
relative amount of energy found in the Ez field component of
the LSE mode is much less than that for the LSM mode.

In Chapter 4 we will actually calculate the growth
rate for both modes, and we will see that this lower Ez

strength does indeed give worse beam-wave coupling and

lower growth rates for the LSE mode. Therefore, we will
defer further discussion of the LSE mode until then and
concentrate in the higher growth-rate, and so potentially

more useful, LSM mode.

Potential Experimental Parameters: Cerenkov

Millimeter FEL

i
i
Up to this point our discussion of the LSE & LSM modes !

has been very general. Now, however, we choose specific H
sets of dimensions and parameters for the resonator, where -
our choices are based on convenience in terms of eventual
experimental application in the Dartmouth Cerenkov FEL.
Note that even though we lose generality in terms of the
actual numbers produced here, the techniques used are

applicatle to any set of parameters that may be available,

The Dartmouth Cerenkov FEL experiment is a low voltage,

low current device that 1s meant to run in the millimeter

and submillimeter part of the radiation spectrum, Since it

T T

uses boron nitride as the dielectric in its resonators, we

also will do so. (Boron nitride has a dielectric constant




-

30

.
-
e e A 130} W

of 4.2). Also, we will limit our voltage range to from 0 to
300 KV again because this is what is available from the
Dartmouth FEL. Finally, for resonator dimensions we choose

three commercial waveguide sizes that are commonly used in

P

standard millimeter wave applications. These choices will
make building actual resonators to match our theoretical
models very easy and inexpensive. The waveguide sizes ar
labeled WR-42, WR 28, and WR 12, and their dimensions are

shown in Fig. 3-6.

LSM-Mode: Output Freguency Characterizatiocn

Now that we have chosen a definite set of parameters
for our resonator, we are ready to use them in the LSM mcde
dispersion relation to determine what frequencies we mignt
expect from an actual device using these dimensions. (We i
will consider frequency output rather than wavelength cutput
because this is what has traditionally been used in the
Dartmouth FEL experiment ) Therefore we return to this

dispersion relation:

tanh(ga) . €b cot (sb)
ca a
we plot output freguency (V¥ =W/2 T ) vs. cperat:ng

voltage for several slab thicknesses in each of the
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waveguide sizes. Again note that operating voltage is
determined by matching the phase velocity of the wave with
the beam velocity for a given beam voltage. (Figs.
3-7,8,9).

Comments

We note immediately that fregquency does scale as the
dimensions of the resonator, both in terms of guide
dimensions and in terms of dielectrc slab thickness.
Therefore we will eventually run into the same problems
mentioned in the introduction, such as heat dissipation and
beam focusing, as we try to go to higher freguencies
{shorter wavelengths). However, operation at 100 Ghz and
above is considered interesting and potentially useful, and
note that both the WR-28 and the WR-12 guides can be made to
operate in that region of the spectrum The WR-42 yresconeztor
also will operate above 100 Ghz, but only with relatively
thin dielectric slabs ‘

Thus, operation above 100 Ghz is possible with these

commercially available waveguide sizes and with moderately :

thin dielectric liners. Now the gain czlculations reviewed
in Chapter 2 will be returned to in an attempt to determine
whether significant growth rates can be obtained Irom this

geometry at these desired frequencies,
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Cnapter 4: Gain for the LSE & LSM Mocdes

Beam-Dielectric Separation: Gain Mechanism Detuning

As noted in Chapter 1, if too many electrons from the
electron beam are allowed to strike the dielectric slabs in
the resonator, unstable beam propagation, and eventuslly,
damage to the dielectric slabs will result. Even though the
rectangular geometry should have better charge bleed-off
properties than the cylindrical resonator, no lossless
dielectric can tolerate large-scale electron dumping on 1t

real

(%]

for prolunged periods of time. Therefore, in an
device there will have to be some separation of the
electrons from the dielectric to prevent too many "stray"
electrons from striking the slabs. This separation will, of
course, affect the interaction between the electrons and the
dielectric, and so will affect the growth-rate cf the
device. Thus we must account for this separation while
doing the single-particle and collective growth-rate

calculations. To do this we note the term:

r

| 2
n _ 1 JdAn ]Ez]

no %o [Ezof? Pu

from the single-particle gain expression in chapter 2.
we let the beam density be constant over the beam area, but

have the beam a distance h away from the dielectric, we

find that n is given by:

36
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n 1 sinh{2g(a - h)] + 1
4 coshz(qa) 2g(a - h)

%o
(see appendix 2)

This expression will be used directly in the single-particle
calculation, and gives exactly the effect of the
beam-dielectric gap on it.

Unfortunately, there is no direct way to account for
the beam-dielectric gap in the collective gain calculation.
We can, however, use 'the single-particle result to get an

effective beam current density, which will give us an

approximation of the effect of the gap on the growth-rate.
To do this we note that if we let h = 0, we are effectively
allowing the beam to £ill the entire vacuum region of the
resonator, which is the assumed situation for the collective

calculation., For h = 0 we get:

l
Dh=0 - 1 sinh(2gqa) 1‘
Ny 4 coshz(qa) 2ga J

We can use the ratio of these two expressions to get
an effective current density for the beam. We simply take
n,/Ny=p, and multiply it times the beam current density.

Thus we have:

Kani gan sl
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lpess) | lp || _sinlzate-mil L
2d(a - h) 2ad B 2g(a - h)
[ sinb(2ga) , ,
2qa
L - J

Using this effective beam current density in the
collective calculation will take into account the detuning
of the growth-rate due to the presence of the gap.

Finally, a reasonable value for h, with m;derate

efforts at electron-beam focusing, is h = .1mm.10  smaller

values of h are in practice achievable, but only with fairly

sophisticated electron-focusing techniques. We will

therefore use h = .lmm for the remainder of this paper.

SINGLE PARTICLE GAIN CALCULATION

Now that we have an expression for n/ng, we need only
an expression for the total energy stored in the resonator
to finally get the single-particle l/Qb' The total energy
is found by a simple integration of the fields over the
resonator (See appendix 3), and the results of this
integration, for each of the two mode types, are given

below.
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gLsz . 4L l.&:zol2 1 + k2 be [1 + cot2(sb)]

16M t2
1 - sin(2sb) + a 1 + sinh(2ga)
2sb cosh<(qa) 2ga
2 2 2 3
E LSM = ._d_L__ ,EZOI _Q_)_ 1 + t b € 2
161 c? k2 (sb) 2
1 + sin(2sb) | [1 + cot?(sb)] +

2sb
a3 1 sinh(2ga) -1
(qa)2 coshz(qa) 2qa

We are now able to compute l/Qb° Note, however, that
for amplifiers a more commonly used parameter than the
resonator Q, is the gain per pass, which will be of the form
e“L. To find x L from l/Qb, we note that if the fields 1in
the resonator have a temporal growth-rate of the form e2sWt
{the reason for this choice will become clear when the
collective calculation is done) we find from its definition,

that 1/Qb will be equal to 2AW/¢) , so that the temporal

growth-rate will be e(LJ/Qb)t. Now note that the growth per

Voud

pass will equal the temporal growth-rate with t replaced by C

/
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T = L/v, the transit time of an electron through the

resonator. Therefore we have:

WT _ WL _ L
Qb Qb v

Finally, at synchronism (vph = beam velocity) we have

v = U /k, so that:

Thus we are able to find &x L, which is the parameter we
now plot. From the expressions for 1/Q, and the total i
energy in the resonator it can be seen that the expression |
for <xL will have a term L3Ib/10 in the numerator.
Therefore we divide out this term and plot finally a current
and resonator-length independent quantity: (Fig. 4-1 - 4-4)

o L
3

Io

In Fig., 4-1 we have plots for both the LSE and LSM modes
using typical potential experimental parameters. Wwe
immediately see that « L for the LSE mode is in fact much
less than for the LSM mode, justifying the previous

concentration on the LSM mode. 1In Fig. 4-2 - 4-4, o L for

each of the three waveguide sizes is plotted, where for each
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waveguide size, several dielectric-slab thicknesses have

been tried.

Single Particle Growth-rate Analysis

One striking result of the growth rate calculation for
the different waveguide sizes is the apparent very low gain
for the larger waveguides. However, this result is
misleading. Remember that the plots shown represent « L
divided by beam current, and no account has been made of the
snaller waveguide size in relation to this total current.
Nasturally, the smaller guides will have a higher current
density for a given current and so will have higher gains.
To get truly equivalent growth-rates for different waveguide
sizes, the gain of the larger waveguide should be multiplied
by the ratio of the area of its beam region to the area of
the beam region of the smaller guide to which it is being
compared. If this factor were included, it can be seen that

the waveguides would be roughly equivalent in gain,

Operational Wavelength

Two important parameters can be determined from tne
shape and position of the gain curves in relation to the
frequency spectrum. These parameters are the optimum
operating freguency, and the frequency bandwidtn. 1Ideally
the operating frequency of a promising experimental device

should be as high as possible, and it should be at least

! .
S
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greater than or equal to 100 Ghz. We see that any of the
waveguide geometries with gain plotted here satisfies that

criterion, as long as we restrict the geometry to moderately

thin dielctric slab thicknesses of .8 to .6mm. As expected,
the WR-12 waveguide gives the highest operating freguencies
(smallest wavelengths), but of course will have the most
trouble with beam focusing and heat dissipation. Any of
these resonators, however, can be made to operate at

"interesting" fregquencies of 100 Ghz or higher.

Resonator Bandwidth

The second important parameter that can be determined
from these plots is the potential operational bandwidth of a
device using these resonators. It is obvious from the plots
that these resonators offer an enormous band-width. Even
the worst case shown, the WR-28 guide with lmm thick
dielectric slabs, offers a half-maximum to half-maximum
frequency bandwidth of about 45 Ghz, with a center frequency
of 60 Ghz. Such an enormous bandwith would be very

attractive in any type of oscillator or amplifier.

COLLECTIVE GROWTH RATE

As mentioned in Chapter 2, the collective growth-rate
can be derived from an expansion of the dispersion relation
which includes the beam, about the dispersion relation which

does not include the beam. The calculation has been done
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for the infinitely-wide two slab geometry,11 and since the
dispersion relation for that geometry is of the same form as
the dispersion relation for the rectangular geometry, the
same derivation may be used. (The difference between the two
dispersion relations lies in the difference of the
wavenumbers, s and q.) The result obtained for this

dispersion relation is given below:

2
aw? . |8 W °4|
4 3 (EkJ
- -
1+ sb tan(sb)
b € cosh? (ga)
b2 € + a2 1 + € —
(Sb)2 b2 (qa)2 (sb) tan(sb) cos? (sb)
a2 sechz(qa)
b2 tanh(ga)
where Q)pz = the plasma frequency, which = 47 n, el/m ,

and where n, = beam density, and the other terms are the

Pin

same as defined for the single-particle calculation.

If we note that I, = nevA,, (A, = beam area), we find

that:




Finally, from page 38, we recall the expression for

the effective beam current density, and note that this must

) z
be substituted for I, into the above expression for We .

Collective Growth per Pass

As noted in Chapter 2, A4W; is the imaginary frequency
shift due to the presence of the beam. Thus the energy in

the wave will grow with an e28Wit

dependence. AS in the
single-particle calculation we can relate this temporal

growth to the growth per pass, which gives

o L _ 2AWKL
5

Also, just as in the single-particle calculation, the
above expression has a factor in it dependent on I apg L,
specifically, L(Ib/10)1/3. Thus the plots in Figs. 4-5 -
4-7 show o L divided by this length-current term. It is
clear from the plots that roughly the same output
frequencies and bandwidths are predicted by the collective
calculation as were predicted by the single-particle

calculation,
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Collective Growth Calculation Approximations

Several approximations were made in obtaining the above

results:

--First, it was assumed that AW /() << 1, so that the
Taylor-series expansion is valid. We will test this

assumption with practical current and resonator parameters

in Chapter 5.

--Second, an approximation of tanh(u) = u was made,12 the

validy of which requires that

2
1 Wp
2 3(3 (aw)?

This approximation will be questionable for high-density,
low voltage beams. With our definition for Q)pz it

becomes:

2 3
e | ew) LA
Ab C2 21

Again, we defer applying this requirement to calculated

results until Chapter 5.

--Finally, an approximation was made in using the infinite
slab result at all for the rectangular geometry. This

regquired that Bz for the LSM mode approach zero, so that tne
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mode could be approximated by a pure TM mode. The validity

of this approximation is checked by plotting the energy

contained in the Bz-component of the field, over the total

energy in the fields. This plot is given in Fig. 4-8. we

see that the Bz-component of the LSM mode is indeed quite
small, with a maximum value of about 9%, so that use of the
TM-mode growth-rate calculation should be a good

approximation.
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Chapter 5: The Dartmouth Cerenkov FEL as an High Power

Amplifier ‘

In this chapter we will complete the specialization,
begun in Chapter 3, of our parameters to match those of the
Dartmouth FEL. The purpose of this chapter is two-£fold.
First we want to see if the Dartmouth FEL, using the
rectangular geometry, could operate as a high-gain,
high-frequency amplifier; and, second, we wish to check that
any approximations that we use will be valid for these real

experimental parameters.

Use of Collective Calculaticn

We must first determine which of the two growth
calculations, the collective or the single-particle
calculation, should in general be used for high-gain
applications. Note that the difference between the two
calculations lay primarily in the assumed magnitudes of the
gain. The single-particle calculation assumes that the
fields are constant while the electrons do work on them. -~
Thus it requires a gain per pass small enough so that the
fields can be approximated to be constant during a transit
time of an electron in the electron beam. We see
immediately that for high-power amplification, which

L

requires a gain per pass of at least e = 10, that this

constant-field approximation must fail. Thus we are left

55
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with the collective calculation for any high-gain
application. Again note that the collective calculation
requires that &0V << 1, but assumes nothing about the

total gain per pass.
Parameters

We have already limited ourselves to the commercial
waveguide sizes, and to operating voltages of less than 300
KV, to accomodate ourselves to the Dartmouth FEL. Thus we
need only specify current density and resonator length to
get parameters that will be completely applicable to that
device. We choose a current density of 10 amps/cmz, which
is just within the capability of the Dartmouth device, ana

we choose a reasonable resonator length of 10cm.
Results

We now plot X L vs. frequency for each of the waveguide
sizes, and refer the reader to Fig. 3-7, 8, & 9 for the
corresponding operating voltage information. (Fig. 5-1 -
5-3). Note that for each of the waveguide sizes, o L falls
between 3 and 4, which means that the gain per pass, e°<L,
will be approximately 20 to 50. (In terminology more
commonly used for amplifiers, this corresponds to gain per
pass of 13 to 17 db). As mertioned earlier, for useful
operation as a high-power amplifier, gain per pass c¢f 10 (=

10 db) is necessary. Thus we are fairly well above this
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requirement. (Note however, that losses in the dielectric
and the conducting walls of the resonator will lower this
performance, though certainly not below the regquired 10db.)
Finally we note that peak gains at freguencies up to 200 Ghz
are possible with the thinner dielectric slabs and the
smaller waveguide sizes. Thus we may conclude that the
2-slab, rectangular resonator, using these parameters which
correspond to those available from the Dartmouth FEL, should
operate effectively as a high-power, high-frequency
amplifier.

Now we need only to check the validity of the two
assumptions that were made in the collective calculation.

The two assumptions that must hold are:

1. &40 << 1, and
w
Ib 2

Aplgaw/e)? Y>3
Calculating peak AW;'s from the plots of «L gives that
Luw/W) ranges from .03 to .01, which is certainly << 1. Doing
a similar calculation for the second expression gives
AT, (aW/cd) 3
blo 28

1 ~ .2

~

ey




61

Thus we see that both these assumptions do hold for these

particular parameters and results.

Conclusions

We have seen generally that the rectangular, 2-slab
resonator for a Cerenkov FEL does show promise for use as a
high-power amplifier at frequencies up to 300 Ghz. Even for
the relatively low current, low voltage FEL at Dartmouth,
gains per pass greater that 10db, at frequencies of up to
200 Ghz should be achievable. The obvious next step must be

an experimental verification of these results.
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Appendix l: Derivation of Dispersion Relations for LSE and

LSM Modes

Maxwell's equations:

7-D = 4WF

<:B =0

TXE = -1 2B
c ot

VXH = 4T7TJ + 1 aD
c c ot

if reduced to component form, yield eight eguations relating
13

the different field components to one another. We

immediately assume a time- and z-dependence of el k2 _‘Jt),
with propagation in the z- direction, and further assume |

that there are no sources present. Then the x- and j

y-component equations of Maxwell's curl equations can be

W

reduced to the following form, with all transverse field

components in terms of the z-field components: -

e

Ey= i kéEz - . 952 i
o | 9y ¢ dx 1
E = _4 i k aE:z + W aBzi
p? | dx c  Jy |
By= i k‘;)Bz +  QE aEz
p? oy c Q x
62
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\
B, = _d k 9B, _ WE ‘;Ez
p? 3 x c Sy
where: p? = W2€ - 2
2
c
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If we assume that this geometry has infinitely conducting

walls, the following boundary conditions on the fields must

hold:
Etan = 0 on conductors———--- EZ,Ey 0 at x = +(a+b)
Ez’Ex =0 aty = 0,4
Etan CONtlNUOUS—~=——~mmcaea— Ez'Ey continuous at x = +a
Dnor continuoug~=—=-=-—vo-——~ D, continuous at x = +a

All B-components are continuous at x = +a.

It can be shown 9 that this geometry will support two

mode~types: LSE, (for which E, = 0), and LSM, (for which B,
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= 0). Thus, from the transverse-component form of Maxwell's
Equations given above, we have the following relations

between E, and B, for each of the mode-types.

LSE:
KJE, . _ ¢ o8, -
Ox o Jy
LSM:
l k‘;Bz = e aEz
O x c dy

Geometry of Fields

In order to actually calculate the fields, we initially
assume that all field components will be made up of some

combination of trigonometric functions, of the general form:

[A sin(sx) + B cos(sx)][C sin(ty) + D cos(ty)]

We next apply the boundary conditions on the conducting

surfaces to this general form, and find that to satisfy }

these conditions Ez must be of the form:

n

E

z A sin{ty) (B sin{(sx) + C cos(sx)]

with t

L]
3

, n =1,2,3.,..
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We now can use the transverse-field Maxwell's Egquations
to get the rest of the field components. First, however, we
must address the fact that we have 3 regions in the
resonator. Obviously regions 1 and 3 must be identical.
They will however, differ from region 2 in that they will
have different wavenumbers (due to the difference in
dielectric constant.) Therefore, we let s be the
wave-number in the slab regions (1 & 3), and let r =
wave-number in the vacuum region, (Region 2). We now make
one final assumption before actually finding the fields. We
assume that the fields are symmetric about x = 0. We do
this because we will eventually want to couple the fields to
an electron beam traveling in the vacuum region of the
resonator. Thus, to get maximum coupling between the
resonator fields and the beam, the fields must be as strong
as possible in the that region. Note, however, that fields
asymmetric about x = 0 must equal 0 at x = 0, while
symmetric fields will never equal zero in the vacuum region.
The symmetric fields will, therefore, couple more strongly
to the beam than will asymmetric fields. Thus we consider
only the symmetric fields here, which simply means that we
use only cos(x) terms in the expressions for the fields in
the vacuum region. Thus the following fields for each of
the modes in each of the 3 regions of the resonator are

found.

i
E
]

s




66

LSE MODES
Region 1:
E, = A sin(ty) [}in(sx) + tan[s(a+b)] cos(sxa
Ey = (ik/t) A sin(ty) Fin(sx) + tan[s(a+b) cos(sx)]
Bz = ks A cos{ty) Eﬁs(sx) - tan{s({a+b)] sin(sx)]
(Wt
B, = i(s2 - h)215/c2) A cos(ty) [sin(sx) + tanl[s{a+b)) cos(sx)
t(w/c) . -
By = is A sin(ty) [gos(sx) - tan|s(a+h)] sin(sxﬂ
(w/c)

where A = E [l - tan(sa) tan(sb)] ,

z0

sec(sa) tan(sb)

and E g = the magnitude of E, at the center

of the dielectric interface.

Region 2:
Ez = F sin{ty)cos(zrx)
Ey = (ik/t) F cos(ty)cos(rx)
B, = -i[—r2 + (QJz/cz)] F cos(ty)cos(rx)
(wr/c)t
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By = -1 r F sin(ty)sin{rx)
(w/c)
Bz = -kr F cos(ty)sin(rx)
(w/c)t
where F = Ezo/cos(ra).
Finally,
Region 3 = Region 1
LSM MODES
Region 1:
Ez = same as for LSE-mode.
E, = (-it/k) A cos(ty) [%in(sx) + tan[s(a+b)] cos(sx)
E, = (k% + t%) a sin(ty) [cos(sx) - tan[s{a+b)) sin(sxﬂ
ks
By = i(we /c) A sin(ty) [;os(sx) - tan[s(a+b)] sin(sxﬂ
s .
B, = (We/c)t A cos(ty) [—cos(sx) + tan[s(a+b)) sin(sxﬂ
ks

Region 2:
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Ez = same as for LSE-mode.
Ey = (~it/k) F cos(rx)cos(ty)
a2 2 . .
Ex = 1(k" 4+ t7) F sin(ty)sin(rx)
kr
BY = i(wW/c) F sin(ty)sin(rx)
r

B_ = (W/c)t F cos(ty)sin(rx)
Kr

and again,

Region 3 = Region 1

Now we must be sure that the rest of Maxwell's
equations, namely the divergence equations and the relation
given by the z-component of the curl equations, are
satisfied, These give the following regquirements on the

wave numbers:

r? = w2 _ g2 _ 2 ;
c2
st = W2e - g2 - g2
C2
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Now note that for operation of a Cerenkov FEL, the waves
must be slow waves, so that k > @ /c. This, however, makes

r2 < 0. Therefore we let

so that all trigonometric functions of r become hyperbolic
functions of q.
As a final step we apply the rest of the boundary

conditions, the continuity conditions at the dielectric

interfaces, to these field components, and so obtain the
dispersion relations for the two mode types. This rather

tedious calculation yields finally:

LSM: tanh(ga) = £ b (sb)cot{sb)
ga a l
LSE: -(ga)tanh(ga) = a (sb)cot(sb) i
b
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Appendix 2: Calculation of n/n,

The initial equation for n is

2
n = vfdA n]Ezl

2
onl Ab

where Ab is the beam area, which equals 2ad (see page 63),
and where n is the beam density.

We assume that n = Dye @ constant over the area of the
beam, and we assume that the beam is a distance h away from

the dielectric surface. From appendix 1 we get that:

Ezosin(ty)cosh(qx)

Ez =
LSM

cosh(ga)

Thus we have:

d a-h
n= o dy/ﬁ sinz(ty)coshz(qx) dx

(2ad) 4cosh? (ga) l
0 (a=-h)

Therefore:

n = | sinh{2g{a-h)] + ll

0 4cosh2(qa) 2g(a-h) i
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appendix 3: Calculation of the Total Energy

in Fields for LSE and LSM modes.

The total energy in an electromagnetic field is given by4:

£= 1, [E-D*+B.H av= w 4,y

—_— e

lem

This gquantity could be computed directly from the fields

given in appendix 1, but if we first note the W, = W we

ms
can greatly shorten the calculation. For the LSE mode (with

Ex = 0), we have:

E = 2Wg = 1 ’Eylz + 'Eziz av

81

and similarly for the LSM mode (with B, = 0)

P: S em ;r 2 2d
C = 2wy =1 JBy’ + ]Bz’ v

. )

Now for the rectangular geometry described in this paper

(see Fig. 3-1), these integrals become:

r a9 rd fa+b ;a
av =] dz| dy 2/ dx+ [ ax
’ /

0 JL ]

T J_a'1

region 1 region 2

where the azppropriate fields, corresponding to the

appropriate regions (vacuum and dielectric) must be used in

71
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the x-integration. These integrals are then done for each '
of the modes, using the field components found in appendix

1. The results are cumbersome, but if we use the following
identities, obtained by doing the integrals and then

simplifying the results using simple trigonometric

identities, the final results can be reduced to those given

in chapter 4.

a+b
J[ Fin(sx) - tan[s(a+b)] cos(sx) ]2 dx =
a L
1 b - sin(Zsbf
cos®[s(a+b)] |2 4s

/a+b
. 2 -
A [Fos(sx) + tan[s(a+b)) 51n(sx)] dx

1 b + sin(2sbh)
coszls(a+b)] 2 4s

oy

e
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